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Abstract-In this paper the authors tried to use the probabilistic method to investigate a thermal field with 
so-called homogeneity index H. It enables global evaluation of a degree of heterogeneity of thermal field. 
The paper presents a structure of H and exemplary calculation results for a model simulating unsteady 

thermal field in a perpendicular connection of two thick-walled plates, infinitely extensive. 

INTRODUCTION 

THERE are certain problems occurring in different 
branches of science but having the same mathematical 
basis. Measures of an arrangement of a finite set of PI 
objects in a limited area S are the branch of math- 
ematics which is connected, among others, with extra- 
galactic astronomy, geography (problems of colon- 
ization), economics and fluid mechanics [l-6]. 

Homogeneity belongs to a group of many features 
of arrangement of a finite set of objects. In ref. [7] a 
so-called factor of four arrangement features (con- 
centration, clustering, weak anisotropy and strong 
anisotropy) has been constructed. In the 1950s the 
method of Zwicky [8] was applied in astronomy for 
evaluation of tendency to grouping of galaxies and 
investigations of size of their clusters. In ref. [9] one 
can find a comparison of some different factors of 
distribution of galaxy populations, taken from Cuta- 
lope of Jagiellonian Field [lo]. In refs. [5, 61 the 
original method by Garncarek was used for the 
description of the structure of two-phase flows. 

In this paper the authors attempt to use the pro- 
babilistic method to investigate a thermal field with 
the so-called homogeneity coefficient H. It enables 
global evaluation of a degree of heterogeneity of ther- 
mal fields. 

For the dete~ination of thermal fields in solids 
with complicated shapes the finite-difference method 
(especially the method of Waniczew [l 11) is widely 
applied. It was used in refs. [12, 131 for the deter- 
mination of the transient field in the area of con- 
nection of a connector pipe with a chemical apparatus 
(connection of two thick-walled cylinders with per- 
pendicular axes). The calculated thermal field was the 
basic point for determination of the quasi-steady field 

of thermal stresses in this connection. The moment of 
heating of the connection, when the maximum value 
of temperature gradient occurred, was assumed to be 
the criterion. 

The temperature gradient is a local value in the 
thermal field, so the criterion of maximum gradient 
does not mean the maximum turbulence in this field. 
The detailed analysis of all local values of the gradient 
in thermal field enables evaluation of a degree of its 
heterogeneity. 

CONSTRUCTION OF HOMOGENEITY INDEX 

OF THERMAL FIELD, H 

Homogeneity of thermal fields belong to their most 
important features. In this paper the original method 
of measurement of homogeneity of thermal fields is 
proposed-based on probabilistics considerations. 

The thermal field which can be illustrated by a map 
having area S (Fig. 1) is homogeneous to scale S/K if: 

A,T, = ; 

where 

N=CT+ 

(1) 

I= I 

Thus the homogeneity of the thermal field depends 
on a range of considerations. In practice non- 
homogeneous thermal fields usually occur. There is 
a very important problem : what field is more or less 
non-homogeneous? For thermal fields for which 

Ic 
c T, = const. 
i= 1 

a measure of homogeneity can be expressed as 
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NOMENCLATURE 

a coefficient of temperature equalization R,., resistance of heat penetration bctwcen 
[m’ s ‘1 fluid and difference i [m K W ‘] 

‘l specific heat, at constant pressure, of T, temperature of the ith subdomain 
difference element i [J kg- ’ K ‘1 (difference element) on the map of 

E(X) expected value of random variable X [-_I thermal field [K] 
E(IL) expected value of random variable 1 [-] T,; temperature of fluid washing difference 
F field of events [-_I element i [K] 

CT temperature gradient [K m ‘1 V, volume of difference element i [m’] 

H homogeneity index [-_I x random variable [-_I. 
N sum of temperatures in the investigated 

area S [K] 

C,. ‘; 
Greek symbols 

probability of obtaining a map of LX minimum value of temperature in the 

thermal field with size ti [-_I considered area S [K] 

Pl probability of event for random variable s plate thickness [m] 
X, taking values x, E R [-_I K number of subdomains (difference 

e,, heat flux between difference element i and elements) with the identical fields of area 

adjacent elementj w] s [--I 
en heat flux between fluid and difference P random variable (homogeneity measure) 

element i [W] P, density of difference element i [kg mm ‘1 

R set of real numbers [-I 5 time [s] 

R/l resistance of heat conductivity between AZ time step [s] 

difference element i and adjacent (0 elements of space of elementary events [--I 
element j [m K We- ‘1 Q space of elementary events [-I. 

(4) 

For thermal fields presented in Fig. 2 we obtain 
p = 12, p = 5, p = 4, p = 2, p = 0 respectively. The 
measure p takes a value equal to zero for the homo- 
geneous field and increases with the heterogeneity of 
the field. 

m 
r--7--1---7 
1 T 1 Ti.1 1 Ti.2 1 

FK;. 1. The thermal field 

FIN. 2. Example of thermal field for N = 4 K 

For thermal fields presented in Fig. 3, which do 

not satisfy the condition expressed by (3), we obtain 
p = 12 and p = 14, respectively. From the obtained 
results it appears that the second of the considered 
fields is more heterogeneous than the first one but it is 
difficult to accept this result. From intuition it appears 
that the result should be the opposite. Thus, p cannot 
be used for evaluation of homogeneity of fields which 
do not satisfy the condition expressed by (3). In practice, 
the compared fields usually do not satisfy the con- 
dition (3). 

In this paper a measure of homogeneity H, enabling 
comparison of thermal fields which do not strictly 

satisfy the condition (3), is proposed. It is expressed 

by 

where E(p) is the expected value of random variable 
,LL It should be stated that both ,U and its expected 
value E(p) are expressed in the same unit, so the 
measure of homogeneity His a number without desig- 
nation. The structure of the measure is based on pro- 

m m 
FIG. 3. Example of thermal field for difference N 
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babilistic considerations, described below without any 
proof. 

Evaluation of homogeneity of different thermal 
fields, shown by maps (see Fig. l), is the aim of the 
considerations. It is assumed that : 

1. A number K of subdomains with identical areas, 
forming the investigated area S, is the same for each 
map. 

2. T,, , T, are natural numbers. 
The postulate 2 is necessary for generating a pro- 

babilistic model. Then, while investigating real ther- 
mal fields, it is omitted. Let us consider one map of 
a thermal field. It can be understood as a result of 
an experiment consisting of placing N balls in K 
chambers. If it is assumed that each ball can be found 
in the chamber with the same probability equal to 
I/K, then the probability of obtaining T, balls in the 
ith chamber for i = 1,. . . , IX and the probability of 
obtaining a map as in Fig. I, can be expressed as 

(6) 

Al! maps, which can be obtained as a result of arrange- 
ment of a given number of balls, N, in a given number 
of chambers, K, are a space of elementary events 
St. Elements of the space are denoted by co = 
(T,, . , T,). A family of all subsets of the space Q is 
a field of events F. (Cl, F, e,,. _,rh) is a probabilistic 
space. 

Measure p, defined by equation (4), is a function 
determined on the space R with values in a set of real 
numbers R, so it is a random variable. Determination 
of the expected value E(U) of the random variable p 
is difficult. As for the finite space of elementary events 
Q = (w , , . . . , a,), the expected value E(X) of random 
variable X: R -+ fz is expressed by 

E(X) = 5 xipi (7) 
*= I 

where pi = P(X = x,) is the probability of the event 
that random variable X takes values +E R. Random 
variable p : Cl -+ R assigns a real number to each ele- 
mentary event 0 = (T,, . . . , T,) 

li 

I( .--) T 
N2 

i= I K 

with probability given by equation (6) 

$, T, = N 

Thus we obtain : 

(9) 

N(K- 1) 
E(p) = ----, 

K 

Correctness of this equation can be easily verified with 
a computer for chosen but not very high N and K. 

Thus, homogeneity index H is expressed by 

(11) 

and, after simple transformations. we have 

Hz- &+-- (K-Tq& Tf,z. (12) 

Homogeneity index H, constructed in this paper, is 
equal to zero for thermal fields which are perfectly 
homogeneous (in each area of the network 7; = N/K). 
When heterogeneity of thermal field increases, H 
increases and reaches the maximum value 

H InBX = N. (13) 

For maps from Fig. 3 values H = 4.0 and H = 2.3 
are assumed, respectively. It means that the thermal 
field illustrated by the first map (Fig. 3) is more 
heterogeneous than that illustrated by the second map 
(Fig. 3). 

From the above example it appears that H can be 
used for comparison of different thermal fields, but 
they must fulfill the condition (3). 

The results obtained agree with intuition (and a real 
state). However, it is not possible to compare two 
different thermal fields, which do not satisfy the con- 
dition H, because of variable range of H, dependent 
on N. 

In practice, the considered thermal fields, often do 
not satisfy condition (3). In such a case we propose 
to make computations for reduced thermal field. It is 
obtained by subtraction of 

from each value of T, for i = I, 2, 3, . . . , K. 
The reduced thermal field corresponds to the 

gradient field, identical with the gradient field cor- 
responding to a real thermal field, used for con- 
struction of the reduced thermal field. 

DIFFERENCE SIMULATION OF UNSTEADY 

THERMAL FIELD 

The equation of unsteady thermal conduction 

iv 
- = aV2T 
Er (14) 

is a starting point for the determination of a thermal 
field in an isotropic body without any internal heat 
sources. It gives a general relation between tempera- 
ture, time and the coordinates of space, which must 
be satisfied for each thermal fieid. 

In this paper, the computational example of the 
unsteady thermal field concerns a complicated shape 
(perpendicular connection of two thick-walled plates 
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FIG. 4. A perpendicular connection of two thick-walled plates infinitely extensive. 

(Fig. 4), infinitely extensive). Analysis of the unsteady 
thermal field in the connection was carried out taking 
into account occurrence of temperature gradients CT 

and heterogeneity characterized with H. 
For obtaining an approximate description of com- 

plex two-dimensional processes, occurring in the con- 
nection and resulting from heating, it was necessary 
to take simplifying assumptions : 

l connection between the plates IS a homogeneous 
body without internal heat sources; 

l ends of the plates are adiabatic surfaces, being at a 
sufficient distance from the connection; they are 
placed in the area where repeatability of thermal 
field is observed ; 

l physical parameters of the material for the plates 
do not depend on temperature ; 

l boundary condition of the third type occurs on the 
plate surface : 

l parameters of fluids in the environment of the con- 
ncction are consrant. 

The geometric form of the connection was complex, 
so while using the assumptions for difference approxi- 
mation of equation (14), the method of elementary 
balances was applied [ 113. 

A sum of heat streams flowing to the considered 
node of the difference element (volume VJ from adjac- 
ent nodesj and from the body surface (Fig. 5) influ- 
ences increase of enthalpy of the difference element 

A set of equations for the energy balance of type (15) 
for all different elements enables determination of the 
temperature of nodes versus time. 

Using the difference quotient, from energy balance 
(IS), equations for the calculation of temperature of 
the element (node) after a time step AZ were obtained 
on the basis of temperature at time ‘c 

In order to obtain physical correcmess of (16), the 
length of the time interval L\r was specially chosen (a 
term in the brackets should not be negative). Thus a 
time step is limited 

(17) 

Using (17) it was possible to calculate the maximum 
time interval in .each node, next AT not greater than 
the minimum boundary interval was assumed for 
calculations. 

The influence of changes in-fluid temperature on 
thermal field in the connection was characterized, 
after each time step Ahz, by the maximum value of the 
temperature gradient and its mean arithmetic value. 
At the same time a value of homogeneity index was 
calculated for thermal field after each step AZ. 
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FIG. 5. Energy balance for differential element : (a) outer, (b) inner. 

RESULTS OF CALCULATIONS 

Calculations were made in order to obtain a thermal 
field under unsteady state, disturbed by a shape of the 
connection. For the obtained thermal field the behav- 
iour of the maximum temperature gradient was 
observed in all the areas of calculations as well as its 
mean value in the limited ranges starting from the 
zone 91 to S-5 (Fig. 4). Homogeneity index was 
observed in a similar way. The obtained results of 
calculations are shown in Figs. 6 and 7. Calculations 
were made for the following data : 

l fluid temperature 573 K ; 
l the same plate thickness 0.090 m ; 
l thermal properties of material for the plates: 

coefficient of heat conductivity 3 1.2 W m- ’ K- ‘, 

specific heat capacity 461.0 J kg- ’ Km ‘, density 
7780.0 kg mm ’ ; 

l coefficient of heat penetration at the heating side 
100.0 at the side of heat giving up 15.0 W rn-- * Km ’ ; 

l temperature at the side of heat giving up 0°C. 

CONCLUSIONS 

The proposed homogeneity index, applied for 
evaluation of the heterogeneity degree of unsteady 
thermal field, represents its disturbance very well. It 
reaches the maximum value (a degree of departure 
from homogeneity) for the maximum value of tem- 

perature gradient in all the computational areas, as 

well as for mean values of the gradient in com- 

putational zones from S-1 to S-5 (Figs. 6 and 7). 

GTs-3 

1000 2000 3000 

Time, Is1 

FIG. 6. Maximum and mean temperature gradient in thermal field. 
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Time, IsI 

FIG. 7. Index homogeneity in thermal field 

Investigations of the thermal field, consisting of cal- 
culating some certain parameters for a series of sub- 
domains S-l c S-2 c S-3 c S-4 c S-5 of this field. 

enable localization of subdomains influencing the 
maxima of the investigated parameters. The index H 
identifies with the area in which the maximum value 
of temperature gradient occurred (Fig. 7---inter- 
section of H,s., and H,~,) better than the mean value 

of the gradient in those subdomains. From the ex- 
emplary results it appears that H can replace a local 
physical quantity, i.e. temperature gradient, in evalu- 
ation of disturbances of thermal fields. 

The global approach to evaluation of thermal field 
with the factor H is a new one in thermodynamics. 
Owing to this, it is possible to evaluate departures 
from homogeneity of the considered thermal fields. It 
may be a device for predicting a way of heating or 
cooling real elements. With this one dimensionless 
number --If-it is possible to evaluate (in a precise 
way) heterogeneity of any thermal field. 
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DEGRE D’HETEROGENEITE DES CHAMPS THERMIQUES-UNE METHODE 
D’EVALUATION 

R&me-Les auteurs utilisent la methode probabiliste pour etudier le champ thermique avec ce qui est 
appele l’index d’homogeneite H. 11 permet I’evaluation globale d’un degre d’hettrogeneite du champ 
thermique. On montre une structure de H et un exemple de calcul pour un modele qui simule le champ 

thermique variable dans une convection perpendiculaire de deux plaques epaisses infiniment etendues. 

EIN VERFAHREN ZUR ABSCHATZUNG DES HETEROGENITATSGRADES 
THERMISCHER FELDER 

Zusammenfassung-In der vorliegenden Arbeit wird ein Wahrscheinlichkeits-Verfahren auf die Unter- 
suchung von Temperaturfeldern angewandt. Der sogenannte Homogenitatsindex H ermiiglicht eine globale 
Abschitzung des Heterogenitatsgrades des Temperaturfeldes. Die Struktur von H wird vorgestellt und 
auRerdem ein beispieh-iaftes Rechenergebnis fur ein Model1 des instationaren Temperaturfeldes in einer 

rechtwinkligen Verbindung zwischen zwei dickwandigen, unendlich ausgedehnten Platten. 

CTEIIEHb HEOAHOPOAHOCTM TEHJIOBOFO fIOJI%METOJI OHEHKM 

hmoTaqnn-B HaCTOKI&i pa6ore “peA”pHHRTa nOFIb,TKZl EiCIIOJIb30BaHBJ-i BCpOKTHOffHOi-0 MCTOAa 

ACCJIeAOBaHAR Tet-UIOBOrO “OAK C IIOMOIULEO TBK Ha3bIBWMOTO K03+$UUUeHTa HeOAHOpOAHOCTA H. 
MeTOA “03BOAKeT OUeHHBaTb CTeneHb H’2OAHOpOAHOCTk, TWIAOBOrO IIOJIR. npHBOARTCK CTpyKTypa H II 

p3yJIbTaTbI PaC’ETOB Ha OCHOBe MOAWIB, O~HCb~Ba,OlUeti HeCTaUHOHapHOe TeIIJIOBOe II0.E IIpH IIepneH- 

AHKyJD-IpHOM COeARHCHIIB ABYX IIJIaCTSiH 6onbmok TOJUUHHbI. 


